Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Yang Qiu, ${ }^{\text {a }}$ Sen-Lin Yang, ${ }^{\text {a }}$
Wei-Sheng Liu ${ }^{\text {b }}$ and
Hai-liang Zhu ${ }^{\text {c* }}$
${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and ${ }^{\text {c }}$ Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: liuws@|zu.edu.cn, hailiang_zhu@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.099$
$w R$ factor $=0.188$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-1-(4-Chlorophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one

In the title molecule, $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClO}_{2}$, all bond lengths and angles show normal values. The two benzene rings make a dihedral angle of $21.0(4)^{\circ}$. The crystal packing is stabilized by van der Waals forces.

Comment

Chalcone derivatives play an important role in organic chemistry (Song et al., 2002; Christophe et al., 1998; Xu et al., 1996). In a continuation of our work on the structural characterization of chalcone derivatives, we report here the crystal structure of the title compound, (I) (Fig. 1).

(I)

The bond lengths and angles in (I) (Table 1) are within normal ranges (Allen et al., 1987). The $\mathrm{C} 8=\mathrm{C} 9$ bond length of 1.334 (8) \AA reveals its double-bond character. The two benzene rings make a dihedral angle of $21.0(4)^{\circ}$. The crystal packing is stabilized by van der Waals forces.

Experimental

The reagents were commercial products and were used without further purification. An aqueous solution of potassium hydroxide

Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.
$(10 \%, 2 \mathrm{ml})$ was added with stirring overnight to a solution of 4 methoxybenzaldehyde $(2 \mathrm{mmol}, 0.27 \mathrm{~g})$ and 1 -(4 -chlorophenyl)ethanone ($2 \mathrm{mmol}, 0.31 \mathrm{~g}$) in ethanol $(95 \%, 15 \mathrm{ml})$ at room temperature. The reaction mixture was then poured into water $(10 \mathrm{ml})$ and neutralized with hydrochloric acid (5\%). A yellow solid precipitated from the solution. The solid was dissolved in ethanol $(15 \mathrm{ml})$ and stirred for about 10 min to give a clear solution. After keeping the solution in air for 8 d , yellow block-shaped crystals were formed at the bottom of the vesssl on slow evaporation of the solvent. They were collected, washed three times with acetone and dried in a vacuum desiccator using CaCl_{2}. The compound was isolated in 76% yield.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClO}_{2}$
$M_{r}=272.71$
Orthorhombic, $\mathrm{Pna2}_{1}$
$a=12.810$ (3) \AA
$b=25.693$ (5) A
$c=3.9920(8) \AA$
$V=1313.9(5) \AA^{3}$
$Z=4$
$D_{x}=1.379 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX areadetector diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.895, T_{\text {max }}=0.920$
5311 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.099$
$w R\left(F^{2}\right)=0.188$
$S=1.34$
2349 reflections
173 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 7$	$1.205(7)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.473(8)$
$\mathrm{O} 2-\mathrm{C} 13$	$1.350(7)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.334(8)$
$\mathrm{O} 2-\mathrm{C} 16$	$1.417(8)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.460(8)$
$\mathrm{C} 4-\mathrm{C} 7$	$1.488(8)$		
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$121.2(6)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$121.2(6)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 4$	$120.5(6)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$129.8(6)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 4$	$118.3(5)$		

All H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$ for the aromatic H atoms and $\mathrm{C}-\mathrm{H}=0.96 \AA$ for the aliphatic H atoms) and were refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The Cl atom has only moderate anomalous scattering, leading to a low precision for the Flack (1983) parameter.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank Fuyang Normal College of Anhui Province, China, for research grant No. LQ007.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Christophe, M., Du, G.-H., John, W. N. \& Bruce, D. H. (1998). Arch. Biochem. Biophys. 356, 214-228.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Song, D.-M., Jung, K.-H., Moon, J.-H. \& Shin, D.-M. (2002). Opt. Mater. 21, 667-671.
Xu, J.-H., Chen, C.-F., Wei, J.-H. \& Liu, Y.-C. (1996). J. Photochem. Photobiol. A, 97, 33-43.

[^0]: © 2006 International Union of Crystallography All rights reserved

